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Abstract

Linear damped vibrating systems are defined by three real definite matrices, M40; DX0; and K40; the
mass, damping, and stiffness matrices, respectively. It is assumed that all eigenvalues of the system are
simple and nonreal so that the eigenvectors (columns of a matrix X c 2 Cn�n) are also complex. It is shown
that, when properly defined, the eigenvectors have a special structure consistent with X c ¼ X RðI � iYÞ

where X R;Y 2 Rn�n; X R is nonsingular and Y is orthogonal. By taking advantage of this structure
solutions of the inverse problem are obtained: i.e., given complete information on the eigenvalues and
eigenvectors, it is shown how M; D; and K can be found. Three points of view are developed and compared
(namely, using spectral theory, structure preserving similarities, and factorisation theory).
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper a ‘‘vibrating system’’ is understood to be the classical model of a linear, viscously
damped elastic system with finitely many degrees of freedom. The unrestrained system has
equations of motion

M €qðtÞ þ D _qðtÞ þ KqðtÞ ¼ 0; ð1Þ
see front matter r 2004 Elsevier Ltd. All rights reserved.
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where M;D; and K are n � n real symmetric matrices. The mass matrix, M, and stiffness matrix,
K, are positive definite (written M40; K40), and the damping matrix D may be positive definite
or positive semi-definite (written DX0).
It is well-known that all solutions of this differential equation can be obtained via the algebraic

equation

ðl2M þ lD þ KÞx ¼ 0: ð2Þ

Complex numbers l and nonzero vectors x for which this relation holds are, respectively, the
eigenvalues and eigenvectors of the system. It will be convenient to define the ‘‘l-matrix’’, or
‘‘matrix polynomial’’,

LðlÞ ¼ l2M þ lD þ K : ð3Þ

The detailed structure of the eigenvalues and eigenvectors can be quite complicated and a
careful treatment under minimal assumptions can be found in Chapters 10 and 13 of [1]. The
‘‘forward’’ problem is, of course, to find the eigenvalues and eigenvectors when the coefficient
matrices are given. Our main interest in this paper is the corresponding inverse problem: Given
complete information 1 about eigenvalues and eigenvectors, re-construct the coefficient matrices.
This also requires analysis of the conditions which are necessarily satisfied by eigenvalues and
eigenvectors of problems of this type, for these conditions must, of course, be satisfied by
admissible data sets. Thus, ideas are examined which may admit the design of a system having
prescribed (complex) natural frequencies and modes of vibration. There is quite a long literature
on this topic, some of which will be introduced subsequently.
It is our objective to provide a synthesis of existing results, with some extensions, in an

accessible analysis which, while making some simplifying assumptions, still provides some useful
new insights on the general inverse problem. However, complete solution of the inverse problem
in a computationally convenient way remains unsolved. For the reader’s convenience, efforts are
made to make the exposition as self-contained as reasonably possible. For clarity, some
algorithms are formulated, but these are not written as high-performance software. They are
summaries of computational steps which, with problems of modest size, are easily formulated and
executed in ‘‘matlab’’ code. Problems of numerical conditioning are not considered.
It is easy to see that the 2n eigenvalues of Eq. (2) are either real numbers or, if not, are in

complex conjugate pairs. Furthermore, all eigenvalues lie in the closed left-half of the complex
plane (the system is ‘‘stable’’ in an appropriate sense). For the purpose of our discussion it is
assumed throughout that all eigenvalues are simple and nonreal, and this hypothesis will not be
repeated in theorem statements. This has the advantage of simplifying the algebraic theory very
significantly, while retaining sufficient generality for many physical problems. Furthermore, it
helps in revealing some algebraic structure which has not been closely examined to date. However
a corresponding approach for general damped second-order systems (which may have real and/or
defective eigenvalues and hence do not satisfy the above assumption) is the object of an ongoing
research. First results will be published in the near future.
1It should be recognised that dominant eigenvalues and modes could be assigned as indicated by experiment, and

subdominant data can be assigned in a physically plausible but otherwise arbitrary fashion.
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Our hypotheses imply that the eigenvalues of LðlÞ have the form

lj ¼ mj � ioj for j ¼ 1; 2; . . . ; n; ð4Þ

where oj40 for all j. It will be useful to introduce diagonal n � n matrices

U ¼ diag½m1 m2 
 
 
 mn�p0; W ¼ diag½o1 o2 
 
 
 on�40;

L ¼ diag½l1 l2 
 
 
 ln� ¼ U þ iW ; O2 ¼ L�L ¼ U2 þ W 240:

(Here, and subsequently, A� denotes the transposed complex conjugate of matrix A.) Notice that,
because zero eigenvalues are not admitted, the stiffness matrix K is necessarily nonsingular.
It is well-understood that the quadratic eigenvalue problem of Eq. (3) can be studied via the

linearised 2n � 2n eigenvalue problem lA � B where

A :¼
D M

M 0

� �
; B :¼

�K 0

0 M

� �
: ð5Þ

Thus, if s denotes the set of all eigenvalues (the spectrum), then

sðl2M þ lD þ KÞ ¼ L [ �L ¼ s l
D M

M 0

� �
�

�K 0

0 M

� �� �
: ð6Þ

Also, ðl2M þ lD þ KÞx ¼ 0 is equivalent to

l
D M

M 0

� �
�

�K 0

0 M

� �� �
x

lx

� �
¼ 0:

Another simplifying assumption that can frequently be made without losing the essence of the
matter, is to suppose that the problem of Eq. (2) is monic, i.e. that M ¼ In: For example, if this is
not the case, let M1=2 be the positive definite square-root of M and modify the problem by writing
y ¼ M1=2x and observe that Eq. (2) reduces to the monic problem

ðl2In þ l bD þ bKÞy ¼ 0; ð7Þ

where bD ¼ M�1=2DM�1=2 and bK ¼ M�1=2KM�1=2: This procedure has the advantage of
preserving symmetries in the coefficients. Simply premultiplying Eq. (2) by M�1 also produces
a monic problem, of course, but the symmetry is obscured. Recently, there has been an interesting
contribution to this problem area in which only partial spectral structure is prescribed, and
attention is focussed on monic systems (see Ref. [2]).
In the paper [3] related problems are considered (using techniques closely related to those

developed below) in which given real coefficients M; D; K are modified by feedback in such a way
that ‘‘eigenstructures’’ are assigned. However, symmetry is not imposed on the coefficients, which
is a main concern of the present contribution. A similar feedback strategy is employed in Ref. [4],
but the symmetry of an initially real symmetric system is lost in the process.
The inverse problem for undamped systems (i.e. when D ¼ 0 in the above discussion) is

relatively simple. For the forward problem, it is a classical result that the two quadratic forms
defined by M40 and K40 can be simultaneously diagonalised by a real congruence. That is,
there is a real nonsingular Q such that

QTMQ ¼ In and QTKQ ¼ W 2;
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for a diagonal W40; the diagonal matrix of natural frequencies. In contrast to more general
symmetric matrix pairs (as in Eq. (5), for example) the reduction to real diagonal forms by a
simultaneous congruence transformation is always possible in the undamped case. (The reduction
of some real pairs, including Eq. (5), to complex diagonal form is discussed in the Appendix to this
paper.)
Our inverse problem for undamped systems is resolved as follows: Given any diagonal W40

and any real nonsingular Q, the system whose eigenvalues are given by W and whose eigenvectors
are the columns of Q is determined by taking

M ¼ Q�TQ�1 and K ¼ Q�TW 2Q�1:

From an algebraic point of view, the difficulties with the damped systems can be traced back to
the fact that, in general, three quadratic forms cannot be simultaneously reduced to diagonal form
by congruence.
2. The modal approach: Jordan pairs and triples

Associated with each eigenvalue lj is an eigenvector (or mode) xj 2 Cn which, a priori, is not
defined to within a scalar multiplier. There is a natural association between the diagonal matrix L
of n eigenvalues and an n � n matrix X c with corresponding eigenvectors as its columns. Then it is
easy to see that the n columns of the matrix

MX cL2 þ DX cLþ KX c ¼ 0

summarise n separate eigenvalue–eigenvector relations of type (2).
In full generality, the question of linear independence of eigenvectors is subtle (see Ref. [1]).

However, with our hypotheses on the distribution of eigenvalues, it can be shown that the
eigenvectors associated with the n eigenvalues in the upper half of the complex plane are
necessarily linearly independent. So if the matrix X c is associated with these eigenvalues it has
linearly independent columns and is therefore nonsingular.
It follows from Eq. (2) that if lj; xj form an eigenvalue–eigenvector pair, then so do their

complex conjugates lj; xj: Thus, the n � 2n matrix

X ¼ ½X c X c� ð8Þ

contains complete information on the (un-normalised) eigenvectors, and the 2n � 2n matrix

J ¼
L 0

0 L

� �
ð9Þ

contains complete information on corresponding eigenvalues. Such a pair ðX ; JÞ is known as a
Jordan pair for the system provided that the matrix

Q :¼
X

XJ

� �
¼

X c X c

X cL X cL

" #
ð10Þ

is nonsingular. Thus, if full sets of eigenvalues and eigenvectors are to be prescribed they must
respect these structures and ensure that Q is nonsingular.



ARTICLE IN PRESS

P. Lancaster, U. Prells / Journal of Sound and Vibration 283 (2005) 891–914 895
Now some basic ideas and (special cases of) results from the theory of matrix polynomials, LðlÞ;
are introduced. (See Refs. [1] and [5, Chapter 14]; also Ref. [6] for an early account.) First a 2n � n
matrix Y is defined by

Y ¼ Q�1 0

M�1

� �
: ð11Þ

It will be shown below that the rows of Y can be interpreted as left eigenvectors of LðlÞ; and the
triple ðX ; J;Y Þ is known as a Jordan triple for LðlÞ: Our subsequent theory is developed from a
fundamental realisation of (LðlÞ�1), which is presented without proof. It has the important
property that it generalises readily to a general eigenvalue distribution and to matrix polynomials
of higher degree. Notice that the only essential hypotheses are that M is nonsingular and (for the
first statement) ðX ; JÞ form a Jordan pair.

Theorem 1. If ðX ; J;Y Þ is a Jordan triple for LðlÞ; then

LðlÞ�1
¼ X ðlI2n � JÞ�1Y : ð12Þ

Conversely, if Eq. (12) holds for a diagonal matrix J, then ðX ; J;Y Þ is a Jordan triple for LðlÞ:

Observe that, given a Jordan triple ðX ; J;Y Þ for LðlÞ; it also holds that

ðLTðlÞÞ�1
¼ YTðlI2n � JÞ�1XT:

Thus, using the converse statement of the theorem, ðYT; J;XTÞ is a Jordan triple for LTðlÞ ¼
MTl2 þ DTlþ KT; and the columns of YT (rows of Y) do, indeed, determine left eigenvectors of
LðlÞ:
Multiplying Eq. (11) on the left by Q immediately gives XY ¼ 0 (an orthogonality property)

and XJY ¼ M�1; giving M in terms of the spectral data. The next result extends this statement to
give all three coefficients, M;D;K in terms of the Jordan triple. A proof is given which may
contain some novel features.

Theorem 2. If ðX ; J;Y Þ is a Jordan triple for LðlÞ; then2

XY ¼ 0; XJY ¼ M�1; XJ2Y ¼ �M�1DM�1

and also XJ�1Y ¼ �K�1:

Proof. Using linearisation (5), it is not difficult to verify that

ðlA � BÞ�1
¼ ðlI2n � A�1BÞ�1A�1 ¼

LðlÞ�1 lLðlÞ�1

lLðlÞ�1 l2LðlÞ�1
� M�1

" #
: ð13Þ

Now integrate around a smooth contour G containing all eigenvalues of LðlÞ: Using the theory of
residues and Theorem 1, it follows that

A�1 ¼
XY XJY

XJY XJ2Y

� �
: ð14Þ
2Formulae of this kind may have first appeared in Ref. [7].
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But it is easily seen that

A�1 ¼
0 M�1

M�1 �M�1DM�1

" #
;

and it only remains to compare matrix entries to obtain the first three results. The last statement
follows immediately on putting l ¼ 0 in Theorem 1. &

Observe that a Jordan pair ðX ; JÞ cannot be expected to define the triple ðM;D;KÞ uniquely.
Indeed, LðlÞ ¼ Ml2 þ Dlþ K is consistent with ðX ; JÞ if and only if ALðlÞ is consistent with
ðX ; JÞ for any nonsingular n � n matrix A, i.e. the right eigenvectors do not change under this
transformation. However, once M is specified, the Jordan triple can be defined, and the two
remaining coefficient matrices are uniquely determined by Theorem 2.

Theorem 3. If ðX ; JÞ is a Jordan pair with forms (8) and (9) then there is a corresponding system
LðlÞ with real (not necessarily symmetric) coefficients, M;D;K :

Proof. First assign M to be any real nonsingular matrix. Define the matrix

P ¼
0 In

In 0

� �
; ð15Þ

and observe that P2 ¼ I2n: Then XP ¼ ½X c X c� ¼ �X and, similarly, PJP ¼ �J; QP ¼ �Q:
Consequently, for any integer r,

XJrQ�1 ¼ ðXPÞðPJrPÞðQPÞ�1
¼ �X �J

r
Q�1;

and the product XJrQ�1 is always real. Since M is assumed real and nonsingular it follows from
the formulae of Theorem 2 that D and K are real as well. &

The results of this section give a solution to the inverse problem for quadratic eigenvalue
problems with real coefficients. The matrix X c and diagonal matrix L can be assigned quite
generally provided only that Q of Eq. (10) is nonsingular. In particular, if L is fixed, then the
family of quadratic polynomials obtained as X c takes values in the nonsingular complex matrices
(for which Q is nonsingular) is real and isospectral.

Example 1. Let

X c ¼
1 �i

�i 1

� �
; L ¼

�1þ 3i 0

0 �2þ 4i

� �
and M ¼ In: Then Y can be calculated from Eq. (11) and Theorem 2 gives

D ¼ �MXJ2YM ¼
3 �1

1 3

� �
; ð16Þ

K ¼ �ðXJ�1Y Þ
�1

¼
14 2

�2 14

� �
; ð17Þ

and demonstrates that the resulting coefficient matrices are not necessarily symmetric.
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3. The symmetry condition

In the last section the eigenvectors (making up the columns of X) are not normalised; their
lengths can be chosen arbitrarily. But the lengths of the left eigenvectors (rows of Y) are then fixed
in terms of those of the right eigenvectors by Eqs. (10) and (11). When the further condition of
symmetry is imposed on M;D;K ; the theory must admit the possibility that Y ¼ XT; i.e. right and
left eigenvectors are identical when suitably normalised. This is implicit in the next theorem.

Theorem 4. Let the real, symmetric, nonsingular matrix M be given. Then a Jordan pair X ; J of
form (8), (9) determines real symmetric matrices K and D if

X

XJ

� �
XT ¼

0

M�1

� �
: ð18Þ

Conversely, let real symmetric matrices M; D; K be given and sðLðlÞÞ ¼ L \ �L; as above. Then the

eigenvectors of LðlÞ can be normalised in such a way that Eq. (18) holds.

Proof. Use the Jordan pair and the given M to define Y as in Eq. (11) and obtain a Jordan triple
ðX ; J;Y Þ: Then K and D are defined as in Theorem 2, and it follows from Theorem 3 that they are
real. If Eq. (18) holds then, because Q is nonsingular, it follows from Eq. (11) that Y ¼ XT and,
substituting in the formulae of Theorem 2, it is seen that D and K are symmetric.
To prove the converse statement, consider the real symmetric pencil lA � B obtained by

linearisation of LðlÞ as in Eq. (5). There is a complex 2n � 2n matrix Q such that the two complex
congruencies QTAQ ¼ I2n and QTBQ ¼ J hold. (This is not obvious. An argument leading to this
conclusion can be found in Ref. [6] and another proof is given in the Appendix to this paper.)
The columns of Q are, of course, the right eigenvectors of the pencil. Because the pencil has the

special form of Eqs. (5), the eigenvectors have the form ½
xj

ljxj
�; where the xj are eigenvectors of LðlÞ:

So, with our hypotheses on the location of eigenvalues, it may be assumed that Q has the structure
presented in Eq. (10).
It follows from QTAQ ¼ I2n that QQT ¼ A�1 and hence

X

XJ

� �
½XT JXT� ¼

0 M�1

M�1 �M�1DM�1

" #
:

Postmultiply by ½In
0
� to obtain Eq. (18). &

Observe that the normalisation property of eigenvectors (required to ensure that Eq. (18) holds)
is now

½xT
j ljx

T
j �

D M

M 0

� �
xk

lkxk

� �
¼ 2ljðx

T
j MxkÞ þ xT

j Dxk ¼ djk; ð19Þ

the Kronecker delta, where 1pj; kp2n:
Consider some consequences of Eq. (18). Substituting from Eq. (10) into Eq. (18) yields

X cX
T
c þ X cX

T
c ¼ 0;

X cLXT
c þ X cLXT

c ¼ M�1: ð20Þ
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Write X c in real and imaginary parts, X c ¼ X R þ iX I (i.e. X R and X I are real). Now the first
displayed equation above says that the real part of X cX

T
c is zero. Thus, for the properly

normalised eigenvectors, X RXT
R � X I XT

I ¼ 0; and X RXT
R ¼ X I XT

I : Using the polar decomposi-
tion of a matrix ([5, Section 5.7], for example), it follows from this that X I ¼ �X RY; where Y is a
real orthogonal matrix. Thus,

X c ¼ X RðIn � iYÞ: ð21Þ

This property has been discussed in Refs. [8,9] (see also Ref. [10], where there is a numerical
confirmation) and also in Ref. [11]. Observe that, under our standing assumption that X c is
nonsingular, so is X R; and �i is not an eigenvalue of Y: In particular, Eq. (21) implies the
interesting fact that the real and imaginary parts of the eigenvector matrix X c have the same
euclidean norm.
Substituting from Eq. (21) in the second equation of Eq. (20) leads to the relation

U þ WYT þYW �YUYT ¼ 1
2
ðXT

RMX RÞ
�1: ð22Þ

Note that we may also write

U þ WYT þYW �YUYT ¼ ½In Y�
U W

W �U

� �
In

YT

� �
:

In the converse direction, it is easily seen that if X R;Y satisfy Eqs. (21) and (22), then Eq. (18)
holds. Thus

Theorem 5. Given a real, symmetric, nonsingular M, a standard pair X ; J; as above, satisfies
Eq. (18) (and so determines real symmetric matrices K and D) if and only if Eq. (21) holds and Y; X R

satisfy Eq. (22).

It is usually the case that M is positive definite. In this case the real orthogonal matrix Y
satisfies a further condition.

Theorem 6. If M40 in the preceding theorem, then

YþYT40: ð23Þ

Proof. Since YT is a normal matrix it has an orthonormal system of eigenvectors, x1; x2; . . . ;xn

and associated eigenvalues eifj ; j ¼ 1; 2; . . . ; n; with 0pfjo2p: Pre- and post-multiply Eq. (22) by
x�

j ;xj; respectively, and use the fact that M40 to obtain

x�
j Uxj þ ðx�

j WxjÞe
ifj þ e�ifj ðx�

j WxjÞ � e�ifj ðx�
j UxjÞe

ifj40;

which yields

2 cos fjðx
�
j WxjÞ40: ð24Þ

Since W40; it follows that cosfj40; for j ¼ 1; 2; . . . ; n:
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Now let y 2 Cn; y ¼
Pn

j¼1ajxj: Then

y�ðYþYTÞy ¼
X
j;k

�ajx
�
j ðYþYTÞxjak

¼
X
j;k

ð�aje
�ifj x�

j xkak þ �ajx
�
j e

ifk xkakÞ

¼ 2
X

j

jajj
2 cosfj:

Since cos fj40 for each j, it follows that y�ðYþYTÞy40 for all vectors ya0; i.e.
YþYT40: &

When n ¼ 2 and M40 this result means that Y belongs to the family

cos t � sin t

sin t cos t

� �� �
t2R

and not to the family
� cos t sin t

sin t cos t

� �� �
t2R

:

More generally, Theorem 6 means that when M40 (and for any n) Y can be parametrised
using real skew-symmetric matrices, C, in the form

Y ¼ ðIn � CÞðIn þ CÞ
�1; ð25Þ

(see for example [5, p. 219]).
The next example shows that the converse of Theorem 6 does not hold.

Example 2. Let L and X R be as in Example 1, then for

Y ¼
1

5

1 �2
ffiffiffi
6

p

2
ffiffiffi
6

p
1

" #
ð26Þ

we have YþYT ¼ 2
5

I2 which is positive definite. However, evaluating the left term of Eq. (22)
reveals

U þ WYT þYW �YUYT ¼
2

25

27 �6
ffiffiffi
6

p

�6
ffiffiffi
6

p
8

" #
¼ 2

25
aaT; ð27Þ

where aT :¼ ð
ffiffiffiffiffi
27

p
;�

ffiffiffi
8

p
Þ: Since the matrix on the right is singular, there is no nonsingular M

satisfying Eq. (22).

An interesting special case, and a check on our analysis, is obtained by setting Y ¼ In: This is,
of course, a real orthogonal matrix (obtained by setting C ¼ 0 in Eq. (25)), and it satisfies the
necessary constraints. Eq. (21) gives X c ¼ ð1� iÞX R: Eq. (22) reduces to 4W ¼ ðXT

RX RÞ
�1; and is

satisfied by X R ¼ 1
2
FW�1=2 where F is also an arbitrary real orthogonal matrix. Following

through with this argument in the case M ¼ In leads to diagonable systems

Inl
2
þ bDlþ bK ¼ FðInl

2
� 2Ulþ O2ÞFT: ð28Þ

By continuity, there will be a family of orthogonal matrices in a neighbourhood of In; and
satisfying Theorem 6, which determines a family of real symmetric pencils LðlÞ with M40:
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Another interesting special case arises if all prescribed eigenvalues lie on a line parallel to the
imaginary axis in the complex plane. In this case U ¼ �mIn for some m40 and Eq. (22) reduces to
a linear equation for Y:

WYT þYW ¼ 1
2
ðXT

RMX RÞ
�1:

Example 3. When n ¼ 2 we may write W ¼ diag½w1; w2�40 and parametrise Y:

Y ¼
cos t � sin t

sin t cos t

� �
;

and obviously YþYT40 if and only if cos t40; or t 2 ð�p=2 ; p=2Þ: It is straightforward to
verify that WYT þYW40 for all Y with

cos t 2
jw1 � w2j

w1 þ w2
; 1

� �
:

Up to now, Eqs. (20) have been interpreted as conditions to be satisfied by X R andY when M is
given. On the other hand, if X R and Y are given this can be used to define M. Thus, a method is
obtained for determining real and symmetric coefficient matrices in terms of the spectral data L;
X R; and Y: In summary:
Algorithm 1: Real symmetric systems
DATA: Diagonal Up0; W40; nonsingular X R and orthogonal Y satisfying YþYT40 (all
real n � n matrices).
DEFINE: L ¼ U þ iW ; X c ¼ X RðIn � iYÞ; and then

J ¼
L 0

0 �L

� �
; X ¼ ½X c X c�:

CONFIRM: Q ¼ ½ X
XJ
� is nonsingular. If so,

COMPUTE : M ¼ ðXJXTÞ
�1; ð29Þ

D ¼ �MðXJ2XTÞM; ð30Þ

K ¼ �ðXJ�1XTÞ
�1: ð31Þ

The spectrum of LðlÞ is, of course, entirely determined by L; and all choices of X R and Y
(subject only to the data constraints above) lead to a real symmetric system. Thus:

Proposition 7. The set of systems

LL :¼ fLðlÞ ¼ l2M þ lD þ K generated as aboveg ð32Þ

is an isospectral set of real symmetric systems with spectrum L [ �L:

Example 4. Let L and X R be as in Example 1 and, in the parametrisation (25), C ¼ 0:75½ 0
�1

1
0
�:

This gives Y ¼ ½ 0:28
�0:96

0:96
0:28� and condition (23) is satisfied. Then, using the above procedure one
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finds (rounded values):

M�1 ¼
5:2032 �2:4576

�2:4576 2:6368

� �
;

D ¼
�1:2333 �0:3

�0:3 4:15

� �
;

K�1 ¼
0:336 0:192

0:192 0:224

� �
:

Note, that D is not positive definite. This illustrates the fact that the isospectral systems with
positive definite coefficients will generally be a proper subset of LL—even when a spectrum in the
open left half-plane is prescribed.
4. Positivity of M; D; K

In this section a remarkable fact will be revealed: briefly, that for real symmetric systems with
non-real spectrum, the positive definite properties of M; D; K depend only on Y of Eq. (21), and
not on X R:
The three coefficient matrices can be expressed in terms of a matrix function PY defined as

follows: For a real orthogonal matrix Y and any complex matrix A ¼ AR þ iAI define

PðY;AÞ ¼ ðReal part ofÞðIn � iYÞAðIn � iYTÞ

¼ AR þ AIYT þYAI �YARYT;

and observe that, if A is diagonal, then PðY;AÞ is real and symmetric. In fact, in this investigation
the A-domain of this function will be confined to the powers of the diagonal matrix L and,
because this matrix is fixed in the discussion of isospectral families the abbreviation PrðYÞ ¼

PðY;LrÞ will be used. Note in particular that, since L0 ¼ In;

P0ðYÞ ¼ In � In ¼ 0: ð33Þ

In general, the functions P1ðYÞ;P2ðYÞ;P�1ðYÞ determine M;D;K : Inserting X C ¼ X RðIn � iYÞ

into Eqs. (29)–(31) yields

M�1 ¼ 2X RP1ðYÞXT
R; ð34Þ

D ¼ �1
2X

�T
R P1ðYÞ

�1P2ðYÞP1ðYÞ
�1X�1

R ; ð35Þ

K�1 ¼ �2X RP�1ðYÞXT
R: ð36Þ

Now X R in the expressions on the right of the above three equations determines a congruence
transformation. Thus, by Sylvester’s law of inertia, the inertias of M; D; K are determined by
those of P1ðYÞ; �P2ðYÞ; and �P�1ðYÞ; respectively. Note, that the inertias of M; D; K are
independent of X R: (The inertia of a matrix A is the triple of nonnegative integers ðp; n; dÞ; giving
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the number of eigenvalues of A in the open right half of the complex plane, the open left half-
plane, and on the imaginary axis, respectively.)

Proposition 8. When Theorem 5 holds, the inertias of M;D;K are equal to those of P1ðYÞ;�P2ðYÞ;
and �P�1ðYÞ; respectively, and are independent of X R:

Example 5. Let L and X c be as in Example 1, i.e. X R ¼ I2 and Y ¼ ½0
1

1
0
�: Then from Eq. (34) one

finds

M�1 ¼ 2ðU þ WYT þYW �YUYTÞ ¼
2 14

14 �2

� �
: ð37Þ

Using this result in Eqs. (35) and (36) gives

D ¼
1

10

1 2

2 �1

� �
; K�1 ¼ Y: ð38Þ

The next theorem shows that the positivity property of all three matrices, M; D; K ; depends
primarily on �P2ðYÞ:

Theorem 9. If Up0; �P2ðYÞX0 and P1ðYÞ; P�1ðYÞ are nonsingular, then M40; DX0; and K40:

Proof. Observe first of all that DX0 follows immediately from Proposition 8. Suppose that
�P2ðYÞX0 and Uo0: Then the number of eigenvalues of LðlÞ in the open left half of the complex
plane is 2n and it follows from Theorem 7 of [12] that M40 and K40:
Now assume that �P2ðYÞX0 and Up0; and suppose that this semidefinite matrix U is the limit

of a sequence of negative definite matrices, fUkg
1
k¼1: With a fixed W40; it follows from Eqs. (29),

(30) and (31) that M;D;K depend continuously on U and so, in the limit as k ! 1; it follows that
(as the limits of sequences of positive definite matrices) MX0 and KX0: However, the condition
that P1ðYÞ and P�1ðYÞ are nonsingular then implies that M40 and K40: &

The procedure outlined at the end of Section 3 can now be extended to admit the construction
of isospectral sets of vibrating systems as defined in the opening paragraphs of this paper.

Proposition 10. Let H be a family of real n � n orthogonal matrices satisfying the conditions:
�P2ðYÞX0 and P1ðYÞ; P�1ðYÞ nonsingular, then

Lþ
L :¼ fLL:Y 2 Hg

is an isospectral set of vibrating systems.

From the point of view of computation, it is clear that, if Y is first determined to satisfy the
condition �P2ðYÞX0 then, generically, the nonsingularity conditions will also be satisfied.



ARTICLE IN PRESS

P. Lancaster, U. Prells / Journal of Sound and Vibration 283 (2005) 891–914 903
Algorithm 2: Vibrating systems. This is the same as Algorithm 1 except that, in addition, Y must
satisfy �P2ðYÞX0; i.e.

� fðU2 � W 2Þ þ 2ðUW ÞYT þY2ðUW Þ �YðU2 � W 2ÞYTg

¼ ½In Y�
�U2 þ W 2 �2UW

�2UW U2 � W 2

" #
In

YT

" #
X0: ð39Þ

In the following example, the condition �P2ðYÞX0 is quite sensitive to Y: This limits the
technique to the generation of systems which are ‘‘close’’ to diagonable systems (i.e. when Y ¼ I).
In other words, close to systems with ‘‘proportional damping’’.

Example 6. (1) This example is based on a four-degree-of-freedom model of a mass–spring chain
system originating in Ref. [13]. The undamped system is monic, i.e. M ¼ I4; and the stiffness
matrix is

K ¼

5 �2 0 0

�2 4 �2 0

0 �2 5 �3

0 0 �3 3

26664
37775:

The natural frequencies determine the matrix

W ¼ diag½0:5354 1:6031 2:4495 2:8536�:

The strategy is to assign this matrix to the damped vibrating systems to be generated. Two
different matrices of damping factors, U, will be assigned in cases (a) and (b).
The eigenvectors of the undamped system could be assigned to the matrix X R defining the real

parts of the eigenvectors to be generated. However, more structure is revealed if we assign X R ¼ I :
Obviously, using other matrices X R simply applies a simultaneous congruence to M;D;K : In fact,
it is apparent from Eqs. (34)–(36) that, to within simultaneous congruence, we may as well assign

M ¼ P1ðYÞ
�1; D ¼ �P1ðYÞ

�1P2ðYÞP1ðYÞ
�1; K ¼ �P�1ðYÞ

�1: ð40Þ

Orthogonal matricesY are generated using Eq. (25) with the (arbitrary) choice of skew-symmetric
matrix,

C ¼

0 1 0 0

�1 0 1 0

0 �1 0 1

0 0 �1 0

26664
37775:

Thus, we assign Y ¼ ðI � aCÞðI þ aCÞ
�1 for a range of values of a increasing from zero (when

Y ¼ I).
(a) Put all the eigenvalues on the vertical line m ¼ �0:1 parallel to the imaginary axis. i.e.

U ¼ �ð0:1ÞI4: It is found that vibrating systems are generated for all a 2 ½0; 0:06�; but at a ¼ 0:08;
the positive definite property of D is lost. The eigenvalues of the (full) matrices M;D;K of (40) at
a ¼ 0:06; 0:08 are indicated in Table 1.
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Table 2

Eigenvalues of M;D;K as functions of a for the case U ¼ mW

a M D K

0.06 0.1764 0.2069 0.3163 0.9475 0.0151 0.0923 0.1103 0.1878 0.2717 0.8263 1.2567 1.4525

0.08 0.1773 0.2091 0.3198 0.9585 �0.0141 0.0901 0.1145 0.2194 0.2727 0.8394 1.2724 1.4616

Table 1

Eigenvalues of M;D;K as functions of a for the case U ¼ mI4

a M D K

0.06 0.1764 0.2069 0.3163 0.9475 0.0056 0.0340 0.0599 0.2299 0.2783 0.8213 1.2464 1.4399

0.08 0.1773 0.2091 0.3198 0.9583 �0.0172 0.0316 0.0622 0.2563 0.2793 0.8344 1.2619 1.4489

P. Lancaster, U. Prells / Journal of Sound and Vibration 283 (2005) 891–914904
(b) For m ¼ �0:1 assume U ¼ mW ; which means that all of the assigned eigenvalues lk in the
second quadrant lie on the same radial line (with slope tan�1ðm�1ÞÞ: The results are similar and
shown in Table 2.
The experiments indicate that, in each case, positivity of M,D, and K is maintained for a 2

½0; a0Þ for some a0 in ð0:06; 0:08Þ:
(2) In this example, the dependence on parameter a seems to be more robust. The mass and

stiffness matrices, M and K are as in Example 6(1), and a damping matrix is arbitrarily assigned:

D ¼ diag½1:0 0:5 1:0 0:5�:

The idea now is to compute the corresponding matrices X R and Y0: Then generate a family of
orthogonal matrices YðaÞ about Y0 (keeping X R fixed) and check the corresponding matrix
coefficients for positive definiteness.
It is found that

Y0 ¼

0:9961 �0:0421 0:0392 0:0663

0:0314 0:9652 0:2593 �0:0123

�0:0501 �0:2573 0:9649 0:0187

�0:0649 0:0195 �0:0175 0:9975

26664
37775:

The corresponding skew-symmetric matrix C0 ¼ ðI þY0Þ
�1
ðI �Y0Þ is

C0 ¼

0:0 0:0188 �0:0227 �0:0329

�0:0188 0:0 �0:1315 0:0080

0:0227 0:1315 0:0 �0:0093

0:0329 �0:0080 0:0093 0:0

26664
37775:

Now a class of symmetric systems is generated by defining Y ¼ ðI � aC0ÞðI þ aC0Þ
�1 for a 2

½�3; 4�: Observe that the unperturbed system then corresponds to a ¼ 1; and a ¼ 0 yields the more
familiar case Y ¼ I :
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Fig. 1. Eigenvalues of D as functions of a:
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It is found that vibrating systems are generated for all a 2 ½�2:666; 2:756�; for example. The
eigenvalues of D as functions of a are shown in Fig. 1. The figure shows clearly the double
eigenvalues, 1 and 1

2
assigned to the unperturbed problem (at a ¼ 1).
5. Structure preserving similarity

In this section our inverse problem is examined from a different point of view. Once again, the
assigned spectrum is as before and the argument progresses from the generation of real systems, to
real symmetric and vibrating systems.

Definition. Given L ¼ U þ iW with Up0 and W40 as above, there is an associated canonical
vibrating system:

L0ðlÞ :¼ l2In � 2lU þ O2: ð41Þ

A particular linearisation of L0ðlÞ is

lI2n � C0;
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where C0 is the associated companion matrix defined by

C0 :¼
0 In

�O2 2U

� �
:

In the literature on vibrating systems there are various notions of ‘‘structure preserving’’ and are
sometimes defined in terms of either pairs of matrices satisfying a simultaneous congruence with
the linearising pair of (5) or, (more generally) satisfying a strict equivalence relation with that pair
(see for example Refs. [14,15]). Here, a narrower definition is made in terms of similarity of the
companion matrix of a system to that of the canonical system. It is convenient to make the
definition in two parts:

Definition. (a) A matrix V 2 R2n�2n is said to define a weakly structure preserving similarity if the
matrix

C :¼ VC0V
�1 ¼ V

0 In

�O2 2U

� �
V�1 ð42Þ

is a block companion matrix, i.e. C can be partitioned into n � n blocks:

C ¼
0 In

C21 C22

� �
:

We refer to such a V as a weakly structure preserving matrix.
(b) A weakly structure preserving matrix V defines a structure preserving similarity if there are

real n � n matrices M40; DX0; K40 such that C21 ¼ �M�1K ; C22 ¼ �M�1D: We refer to
such a V as a structure preserving matrix.

It is clear that all matrices C (and hence the underlying quadratic systems) determined by
weakly structure preserving similarities are isospectral with spectrum L [ �L:
A simple lemma can be useful:

Lemma 11. A nonsingular V 2 R2n�2n (with n � n partitions Vij) is a weakly structure preserving
matrix if and only if

V21 ¼ �V12O2 and V22 ¼ V11 þ 2V12U : ð43Þ

Proof.With V nonsingular equation (42) is equivalent to CV ¼ V ½
0

�O2
In
2U
�: Comparing blocks it is

found that C11 ¼ 0 and C12 ¼ In if and only if Eq. (43) holds. &

Example 7. (a) Note that a simple class of weakly structure preserving matrices consists of
matrices

V ¼
A 0

0 A

� �
;

where A is nonsingular. These transformations generate diagonable systems which are similar to
the canonical system and are not generally useful.
(b) Another simple class of structure preserving matrices is generated by nonsingular matrices V

which commute with C0: This class is also of no immediate interest because VC0V
�1 � C0 leaves

C0 invariant.
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Our next objective is to express a weakly structure preserving matrix, V, in terms of the spectral
data, L and X c employed earlier in this paper. Observe first that the complex matrix

Z :¼
�L �In

L �In

" #
; ð44Þ

reduces the canonical companion matrix to diagonal form, thus

0 In

�O2 2U

� �
¼ Z�1 L 0

0 �L

� �
Z:

Note that the columns of Z�1 are eigenvectors of C0: If V is a weakly structure preserving
matrix then, using the defining equation (42),

C ¼ VZ�1 L 0

0 �L

� �
ðVZ�1Þ

�1: ð45Þ

Thus, the columns of VZ�1 are eigenvectors of C and, with our hypotheses on the spectrum, we
may write

VZ�1 ¼
X c

�X c

X cL X cL

" #
; ð46Þ

whence,

V ¼
X c

�X c

X cL X cL

" #
Z ¼

X cLþ �X cL �ðX c þ �X cÞ

ðX c þ �X cÞO2 �ðX cLþ X cLÞ

" #
; ð47Þ

and is clearly a real matrix (as the definition requires). Thus, V is expressed in terms of the
eigenvalues and eigenvectors making up L and X c: (It is easily verified that this expression for V is
consistent with Lemma 11.)
Our construction ensures that C is real and (from Eqs. (45) and (46)) the relations

X cL2 � C22X cL� C21X c ¼ 0 and X cL2 � C22X cL� C21
�X c ¼ 0

hold. Observe also that V nonsingular ensures that Q of Eq. (10) is nonsingular and so L and X c

determine a Jordan pair. The following statements summarises the position and provides an
alternative to the use of Theorems 2 and 3.
First let X denote the set of X c 2 Cn�n for which V is nonsingular.

Theorem 12. Assume that Up0; W40 and L ¼ U þ iW are fixed (as above). Then the set

fLX cðlÞ ¼ l2In � lC22 � C21:X c 2 Xg

generated by Eqs. (42) and (47) consists of real and isospectral systems with spectrum L [ �L and
eigenvector matrix X ¼ ½X c

�X c�:

The next objectives are, of course, to determine the structure preserving matrices V which
generate symmetric systems and, especially, those which generate vibrating systems in the sense of
our formal definition. Naturally, we turn to Eqs. (21) and see that, by assigning X c ¼

X RðIn � iYÞ; as before, a necessary condition for symmetry is satisfied and that the coefficients
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M;D;K are determined in terms of L; X R; and Y by Eqs. (34)–(36). Furthermore, the
orthogonality properties of the eigenvectors are ensured. In this case, Eq. (47) takes the simple
form

V ¼ V ðX R;YÞ ¼ 2
X R 0

0 X R

� �
U �YW �In

O2 �ðU þYW Þ

� �
: ð48Þ

As before, positivity of M is equivalent to that of P1ðYÞ; i.e. in order to generate a vibrating
system, Y must be chosen so that P1ðYÞ40: Indeed, if Y is chosen so that the hypotheses of
Theorem 8 are satisfied, then there is a vibrating system LðlÞ ¼ l2M þ lD þ K determined by this
data and, as the right eigenvectors are fixed by X c ¼ X RðIn � iYÞ; the matrices C21; C22 must
have the form �M�1K and �M�1D; respectively, and Eqs. (34)–(36) hold. Thus, V defines a
structure preserving similarity.
Define a subset Xþ of X to be the set of X c ¼ X RðIn � iYÞ for which X R 2 Rn�n is nonsingular,

and Y 2 H as defined in Proposition 10. Then we have:

Theorem 13. If X c 2 Xþ then V of Eq. (48) defines a structure preserving similarity C :¼ VC0V
�1;

with

C21 ¼ X RP1ðYÞðP�1ðYÞÞ
�1X�1

R and C22 ¼ X RP2ðYÞðP1ðYÞÞ
�1X�1

R :

Another formal definition will assist in linking the results of this and the preceding sections. Let

Vþ
L ¼ fV ðX R;YÞ generated by ð48Þ:X c 2 Xþg:

Each V inVþ
L defines a structure preserving similarity and hence generates a vibrating system, say

fðV Þ :¼ LðlÞ ¼ l2M þ lD þ K : Then, recalling Proposition 9,

Lþ
L ¼ ffðV Þ:V 2 Vþ

Lg:

Note that, because similarity transformations are invertible, any pair of systems L1ðlÞ and L2ðlÞ in
Lþ

L have the property that their companion matrices C1 and C2 are similar.
In the spirit of Algorithms 1 and 2, an ‘‘algorithm’’ for generating real symmetric systems could

be formulated using Eq. (42) together with Eq. (48). However, it is less direct than the preceding
algorithms and so is not formulated explicitly.
6. Factorisation and the eigenmatrix

Under the hypotheses made on the eigenvalues of a vibrating system LðlÞ it is not difficult to see
that LðlÞ is positive definite whenever l 2 R: This, in turn, is sufficient to show that, in the monic
case, there is a factorisation of LðlÞ of the form

LðlÞ ¼ ðlIn � Z�ÞðlIn � ZÞ ¼ l2In � lðZ� þ ZÞ þ Z�Z; ð49Þ

where Z has all its eigenvalues in the upper half of the complex plane (see for e.g. Ref. [1, Chapter
13]). Since eigenvalues and eigenvectors of Z are clearly eigenvalues and eigenvectors of LðlÞ (Z is
sometimes known as an eigenmatrix), Eq. (49) can be used to prescribe a set of n eigenvalues and
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corresponding right eigenvectors. However, observe that Z cannot be a real matrix, or our
hypotheses on sðLÞ will not be satisfied. In this section, the use of this factored form as an
approach to the inverse eigenvalue problem is explored. However, there may be a disadvantage in
the fact that the systems discussed are monic (see the Introduction).
The factored form implies that bD ¼ �ðZ þ Z�Þ and bK ¼ Z�Z are automatically hermitian, and

the condition bKX0 is automatically fulfilled. (However, there are no zero eigenvalues and so, in
fact, bK is positive definite.) This approach is appealing, however, although the matrices bD ¼

�ðZ þ Z�Þ and bK ¼ Z�Z are (complex) hermitian, in general they are not real and symmetric. This
approach has been followed up at some length in Ref. [16], and Theorem 9 from that paper is re-
examined here. The theorem is specialised in one direction (the nature of the spectrum) and
extended in another.

Theorem 14. A pair of matrices X ; J as defined in Eqs. (8) and (9) determine a monic matrix

polynomial LðlÞ with bK and bD real and symmetric and bK40 if and only if there are real symmetric
matrices S and T, with T positive definite, such that

X cX
T
c ¼ � 1

2iT ; ð50Þ

X cLXT
c ¼ 1

2
ðIn þ iSÞ: ð51Þ

Furthermore, bDX0 only if SX0; and bD40 if and only if S40:

Proof. If K and D are real and symmetric then X c can be defined so that Eqs. (20) hold. The first of
these implies that X cX

T
c is skew-hermitian. Obviously, this matrix is also symmetric. It follows

easily from these observations that X cX
T
c ¼ � 1

2
iT for some real symmetric T.

Using the abbreviation Y ¼ X cLXT
c ; the second equations of Eq. (20) reads Y þ Y � ¼ In and

has the general solution Y ¼ 1
2

In þ E; where E is an arbitrary skew-hermitian matrix. But Y is
also symmetric and it follows that E ¼ 1

2
iS for some real symmetric S, and Eq. (51) is obtained.

To see that T40 recall that X c is nonsingular and write the second equation of Eq. (20) in the
form

ðX cLX�1
c ÞðX cX

T
c Þ þ ð �X cX

�
c ÞðX

��
c

�LX �Þ ¼ In:

For brevity, put A ¼ X cLX�1
c and use Eq. (50) to obtain Að� 1

2
iTÞ þ ð1

2
iTÞA� ¼ In; or

ðiAÞT þ TðiAÞ
�
¼ �2In:

But iLc (and hence iA) has all its eigenvalues in the open left half of the complex plane. It follows
from the Lyapunov theorem (see for example [5, Section 13.1]) that T is positive definite.
Conversely, let Eqs. (50) and (51) hold with S and T real symmetric. Then it is easily verified

that Eqs. (20) hold. It is necessary to show that the pair X ; J is a Jordan pair. But

X

XJ

� �
XT

c LXT
c

X �
c L�X �

c

" #
¼

X c X c

X cL X cL

" #
XT

c LXT
c

X �
c L�X �

c

" #
¼

0 In

In �

� �
;

where � denotes a matrix of no immediate concern. Since the matrix on the right is obviously
nonsingular, so is the left-most matrix and X ; J do, indeed, form a Jordan pair.
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Note that, when Eqs. (50) and (51) hold and T is nonsingular, XT
c ¼ � i

2
X�1

c T can be
substituted in the second equation to obtain

Z ¼ X cLX�1
c ¼ ð�S þ iInÞT

�1: ð52Þ

With this Z, Eq. (49) holds, and it is easily verified that, indeed,bD ¼ �ðZ þ Z�Þ ¼ ST�1 þ T�1S ð53Þ

and bK ¼ Z�Z ¼ T�1ðS2 þ InÞT
�1 ð54Þ

are real symmetric matrices. Certainly bKX0 and, because each factor on the right is nonsingular,bK40:
Now suppose that bDX0 and let m; x be an eigenvalue/eigenvector pair of S, i.e. Sx ¼ mx; xa0:

Write

2T�1S ¼ ðT�1S þ ST�1Þ þ ðT�1S � ST�1Þ:

Since T�1S � ST�1 is skew-symmetric, xTðT�1S � ST�1Þx ¼ 0 and, from Eq. (53),

xT bDx ¼ xTðT�1S þ ST�1Þx ¼ 2xTT�1Sx ¼ 2mðxTT�1xÞ:

Since xTT�1x40 and bDX0 it follows that mX0: Thus, all eigenvalues of S are nonnegative and
SX0; as required.
Examples are easily constructed to show that SX0 does not necessarily imply that bDX0:

However, our argument does show that bD40 if S40: Conversely, it follows from Theorem 3 of
Section 13.1 of [16], for example, that S40 implies bD40: &

From the point of view of parametrisation of the monic problem, observe that, when L ¼

U þ iW is prescribed, the free parameters of S and T match exactly those of bD and bK ; to be
determined. Also, the important case in which bD40 can be ensured by choosing S40: The
eigenvalues and eigenvectors of the monic system will be those of Z ¼ ð�S þ iInÞT

�1; together
with their complex conjugates. Precisely how to assign S and T to produce desired eigenvalues and
eigenvectors is, however, an open question.
In the special case of diagonable systems of form (28) (withY ¼ In in Section 3), it is found that

S ¼ FðW�1UÞFT; T ¼ FW�1FT40:

An alternate characterisation of Z in Eq. (52) is

Proposition 15. A matrix Z 2 Cn�n has form (52) if and only if it has a polar decomposition

Z ¼ YH where (in real and imaginary parts) Y ¼ Y R þ iY I is unitary with Y I nonsingular and
H 2 Rn�n with H40:

The proof is straightforward and is omitted. This can be seen as providing a ‘‘normalised’’
version of Eq. (52). The fact that H is real makes this form rather special. Also, because Z is not
generally normal (otherwise eigenvectors would be orthogonal), the analogous properties do not
hold for the alternate polar form, Z ¼ bH bY : This result suggests that, by prescribing Z in this way
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we get more direct information about the singular values of Z (the square-roots of eigenvalues of
H) than we do about the eigenvalues of Z.
Algorithm 3: Monic vibrating systems
DATA: Real matrices T40 and SX0 chosen so that ð�S þ iInÞT
�1 has only nonreal

eigenvalues.

COMPUTE : bD ¼ ST�1 þ T�1S; ð55Þ

bK ¼ T�1ðS2 þ InÞT
�1: ð56Þ

Eigenvalues and eigenvectors assigned to LðlÞ in this algorithm are, of course, those of ð�S þ

iInÞT
�1: In general, one must apply a standard eigenvalue/eigenvector technique to find sðð�S þ

iInÞT
�1Þ (and hence L) and the matrix of eigenvectors, X c: To obtain a nonmonic vibrating

system, an arbitrary mass matrix M40 can be assigned, and then D and K are obtained by
reversing the process leading to Eq. (7).
Connections between the factorisation and the modal approaches for symmetric vibrating

systems can be made by inserting X c ¼ X RðIn � iYÞ into Eqs. (50) and (51) to obtain

T ¼ 2X RðYþYTÞXT
R; ð57Þ

In ¼ 2X RP1ðYÞXT
R; ð58Þ

S ¼ 2X RðW �YWYT �YU � UYTÞXT
R: ð59Þ

The first equation relates Theorem 6 to the property T40 of Theorem 13 and, in the light of Eq.
(34), the second equation above is consistent with the monic case considered here. However, Eq.
(59) reveals that the condition SX0 of Theorem 13 is equivalent to (see Section 4)

W �YWYT �YU � UYT ¼ ½I Y�
W �U

�U �W

� �
I

YT

� �
X0;

in contrast to the condition �P2ðYÞX0 of Theorem 8.

Example 8. Positive definite matrices T and S are constructed to closely reproduce the eigenvalues
of Example 1. Thus, T ¼ diag½0:207 ; 0:459� and

S ¼
0:350 0:404

0:404 0:602

� �
are positive definite, and the eigenvalues of Z ¼ ð�S þ iIÞT�1 are �2:0003þ 4:0087i, and
�1:0021þ 3:0009i. Then Eqs. (55) and (56) yield

bD ¼
3:3816 2:8319

2:8319 2:6231

� �
; bK ¼

30:0057 4:0480

4:0480 7:2414

� �
which are, indeed, positive definite.
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Notice also that the data of Example 1 is consistent with the following data for the modal
approach:

Y ¼
1

2

1 �
ffiffiffi
3

pffiffiffi
3

p
1

" #
; X R ¼

�0:248 0:205

0:305 0:370

� �
:

7. Conclusions

The inverse spectral problem for vibrating systems has been discussed from three points of view:
spectral theory, structure preserving similarity transformations, and factorisation properties.
Throughout, it has been assumed that the spectrum of the systems investigated is made up of
simple, nonreal eigenvalues. The first two points of view are the most direct and admit the
construction of isospectral sets of quadratic matrix functions LðlÞ ¼ l2M þ lD þ K : Some light
has been cast on the construction of successively more intricate systems with first, real coefficients;
second, real symmetric coefficients; and third, real and positive definite (or semi-definite)
coefficients.
For real symmetric systems, the eigenvectors have a special structure. The ‘‘eigenmatrix’’ X c 2

Cn�n can be written in the form X c ¼ X RðI � iYÞ where X R; Y 2 Rn�n; X R is nonsingular and Y
is orthogonal. This structure plays a vital role in these investigations (see Theorem 5). In
particular, the inertias of M; D; K are shown to depend only on Y (Proposition 8), and a
technique has been developed to determine vibrating systems (when M40; DX0; K40), see
Theorem 8, Algorithm 2 and Example 6.
In Section 5 it has been shown how structure preserving similarities for real symmetric systems

can be constructed (see Eqs. (42) and (48)).
The approach via factorisation properties (Section 6) effectively replaces the inverse quadratic

eigenvalue problem for vibrating systems by the linear inverse spectral problem for matrices of the
form ð�S þ iIÞT�1 where T40 and SX0: Further investigation of this linear problem would be
useful.
For the future, it is important to obtain a deeper understanding of the role of the orthogonal

matrix Y: In particular, clarification of the solutions sets of the inhomogeneous equation (22)
(when the mass matrix M is prescribed) would be useful.
Research should also be directed to resolution of this whole complex of problems when both

real and nonreal eigenvalues are admitted.
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Appendix A. Normalising the eigenvectors

This appendix concerns real symmetric pencils lA � B and their reduction to diagonal form by
congruence. Application is made in the main text to pencils obtained from a ‘‘linearisation’’
process, but the argument here applies more generally. However, attention is confined to pencils
with the distribution of eigenvalues assumed throughout this paper, namely that all eigenvalues
are simple and nonreal (and are written lj ¼ mj � ioj; j ¼ 1; 2; . . . ; n with oj40 for each j). In
particular, this implies that A and B are of even size, say 2n: It will be shown that:
Proposition 16. Under the hypotheses on A and B above, there is a nonsingular matrix X 2 Cn�n

such that XTAX ¼ In and XTBX is a diagonal matrix of eigenvalues of the pencil lA � B:
Proof. First, a general result concerning the simultaneous reduction of pairs of real symmetric
matrices by a real congruence transformation is used. With our assumptions on the eigenvalue
distribution, Theorem I.5.4 of [17] (especially equations (I.5.12) and (I.5.11)) (see also [18, Section
2.6]) asserts the existence of a nonsingular real symmetric X 1 such that

XT
1 AX 1 ¼ diag

0 1

1 0

� �
; . . . ;

0 1

1 0

� �� �
ðA:1Þ

and

XT
1 BX 1 ¼ diag

�o1 m1
m1 o1

� �
; . . . ;

�on mn

mn on

� �� �
: ðA:2Þ

The further reduction to diagonal (rather than tri-diagonal) form now reduces to examination
of the primitive 2�2 pencil

lA0 � B0 :¼ l
0 1

1 0

� �
�

�o m

m o

� �
; ðA:3Þ

with o40: It is easily verified that the eigenvalues of this pencil are m� io: Let n ¼ e�ip=4 and
form the complex symmetric matrix

X 00 ¼
1ffiffiffi
2

p
n �n

�n n

� �
:

It can be verified that

XT
00A0X 00 ¼ I2 and XT

00B0X 00 ¼
mþ io 0

0 m� io

� �
;

and a simultaneous complex congruence of the required form is obtained in this primitive case.
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Now write X 0 as a direct sum of n primitive matrices X 00 associated with the eigenvalues lj for
j ¼ 1; 2; . . . ; n: Thus,

X 0 ¼

X 00;1 0 0 . . . 0

0 X 00;2 0 . . . 0

..

. ..
. ..

.

0 0 0 . . . X 00;n

266664
377775;

and it is easily verified that, if X ¼ X 1X
�1
0 then X is, of course, complex and XTAX ¼ I2n and

XTBX ¼ D; a diagonal matrix of eigenvalues, as required. &
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